14 research outputs found

    Effect of Canal Bank Engineering Disturbance on Plant Communities: Analysis of Taxonomic and Functional Beta Diversity

    Get PDF
    We aimed to determine how patterns of functional and taxonomic dissimilarities and their components differ between disturbed and undisturbed plant communities. Taxonomic (species) and functional (trait) diversity are key aspects of biodiversity, and their respective dissimilarities are important in diversity scaling and for informing conservation. We utilized a pseudo-experimental setting, the Basingstoke Canal, UK, where sections of canal bank have been repaired over a four-year period and are interspersed with sections left undisturbed. We collected plant community data, computed functional beta diversity and taxonomic beta diversity and partitioned them into species loss and replacement components. We compared disturbed and undisturbed plots with respect to these dissimilarity measures, the time since disturbance, invasive species, plant life-forms and environmental dissimilarity. We found high levels of taxonomic (85–90%) and functional (70–76%) dissimilarities between disturbed and undisturbed sites, primarily driven by turnover. The total dissimilarity was lower for functional dissimilarity than taxonomic dissimilarity. Disturbed sites had greater between-site taxonomic and functional dissimilarities and lower plant abundances than undisturbed sites, driven by both turnover and nestedness components. The disturbed site functional diversity diverged strongly from null expectations. We found no significant effects of time since disturbance, environmental variables or invasive species, possibly indicating the dominance of stochastic, local-scale processes. However, disturbed sites had lower levels of phanerophyte richness and higher levels of therophyte richness. Our results indicate that small-scale disturbances may increase taxonomic and functional between-community dissimilarities in anthropogenic habitats without increasing invasive species, lending support to local-scale conservation that enhances habitat heterogeneity to promote taxonomic diversity and its corresponding biotic functions

    A possible role for river restoration enhancing biodiversity through interaction with wildfire

    Get PDF
    BackgroundHistorically, wildfire regimes produced important landscape-scale disturbances in many regions globally. The “pyrodiversity begets biodiversity” hypothesis suggests that wildfires that generate temporally and spatially heterogeneous mosaics of wildfire severity and post-burn recovery enhance biodiversity at landscape scales. However, river management has often led to channel incision that disconnects rivers from their floodplains, desiccating floodplain habitats and depleting groundwater. In conjunction with predicted increases in frequency, intensity and extent of wildfires under climate change, this increases the likelihood of deep, uniform burns that reduce biodiversity.Predicted synergy of river restoration and biodiversity increaseRecent focus on floodplain re-wetting and restoration of successional floodplain habitat mosaics, developed for river management and flood prevention, could reduce wildfire intensity in restored floodplains and make the burns less uniform, increasing climate-change resilience; an important synergy. According to theory, this would also enhance biodiversity. However, this possibility is yet to be tested empirically. We suggest potential research avenues.Illustration and future directionsWe illustrate the interaction between wildfire and river restoration using a restoration project in Oregon, USA. A project to reconnect the South Fork McKenzie River and its floodplain suffered a major burn (“Holiday Farm” wildfire, 2020), offering a rare opportunity to study the interaction between this type of river restoration and wildfire; specifically, the predicted increases in pyrodiversity and biodiversity. Given the importance of river and wetland ecosystems for biodiversity globally, a research priority should be to increase our understanding of potential mechanisms for a “triple win” of flood reduction, wildfire alleviation and biodiversity promotion

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Biodiversity: The role of interaction diversity

    No full text
    Links between the diversity of ecological interactions and community structure have long been recognised but remain broadly understudied. A new study concludes that vertebrate trophic interaction diversity is nearly uncorrelated with either phylogenetic or functional biodiversity and largely reproduces flora-defined bioregions

    A Possible Role for River Restoration Enhancing Biodiversity through Interaction with Wildfire

    Get PDF
    Background Historically, wildfire regimes produced important landscape-scale disturbances in many regions globally. The “pyrodiversity begets biodiversity” hypothesis suggests that wildfires that generate temporally and spatially heterogeneous mosaics of wildfire severity and post-burn recovery enhance biodiversity at landscape scales. However, river management has often led to channel incision that disconnects rivers from their floodplains, desiccating floodplain habitats and depleting groundwater. In conjunction with predicted increases in frequency, intensity and extent of wildfires under climate change, this increases the likelihood of deep, uniform burns that reduce biodiversity. Predicted synergy of river restoration and biodiversity increase Recent focus on floodplain re-wetting and restoration of successional floodplain habitat mosaics, developed for river management and flood prevention, could reduce wildfire intensity in restored floodplains and make the burns less uniform, increasing climate-change resilience; an important synergy. According to theory, this would also enhance biodiversity. However, this possibility is yet to be tested empirically. We suggest potential research avenues. Illustration and future directions We illustrate the interaction between wildfire and river restoration using a restoration project in Oregon, USA. A project to reconnect the South Fork McKenzie River and its floodplain suffered a major burn (“Holiday Farm” wildfire, 2020), offering a rare opportunity to study the interaction between this type of river restoration and wildfire; specifically, the predicted increases in pyrodiversity and biodiversity. Given the importance of river and wetland ecosystems for biodiversity globally, a research priority should be to increase our understanding of potential mechanisms for a “triple win” of flood reduction, wildfire alleviation and biodiversity promotion

    Widespread shifts in body size within populations and assemblages

    Get PDF
    Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance

    A global metagenomic map of urban microbiomes and antimicrobial resistance

    No full text
    We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.Funding: the Tri-I Program in Computational Biology and Medicine (CBM) funded by NIH grant 1T32GM083937; GitHub; Philip Blood and the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant number ACI-1548562 and NSF award number ACI-1445606; NASA (NNX14AH50G, NNX17AB26G), the NIH (R01AI151059, R25EB020393, R21AI129851, R35GM138152, U01DA053941); STARR Foundation (I13- 0052); LLS (MCL7001-18, LLS 9238-16, LLS-MCL7001-18); the NSF (1840275); the Bill and Melinda Gates Foundation (OPP1151054); the Alfred P. Sloan Foundation (G-2015-13964); Swiss National Science Foundation grant number 407540_167331; NIH award number UL1TR000457; the US Department of Energy Joint Genome Institute under contract number DE-AC02-05CH11231; the National Energy Research Scientific Computing Center, supported by the Office of Science of the US Department of Energy; Stockholm Health Authority grant SLL 20160933; the Institut Pasteur Korea; an NRF Korea grant (NRF-2014K1A4A7A01074645, 2017M3A9G6068246); the CONICYT Fondecyt Iniciación grants 11140666 and 11160905; Keio University Funds for Individual Research; funds from the Yamagata prefectural government and the city of Tsuruoka; JSPS KAKENHI grant number 20K10436; the bilateral AT-UA collaboration fund (WTZ:UA 02/2019; Ministry of Education and Science of Ukraine, UA:M/84-2019, M/126-2020); Kyiv Academic Univeristy; Ministry of Education and Science of Ukraine project numbers 0118U100290 and 0120U101734; Centro de Excelencia Severo Ochoa 2013–2017; the CERCA Programme / Generalitat de Catalunya; the CRG-Novartis-Africa mobility program 2016; research funds from National Cheng Kung University and the Ministry of Science and Technology; Taiwan (MOST grant number 106-2321-B-006-016); we thank all the volunteers who made sampling NYC possible, Minciencias (project no. 639677758300), CNPq (EDN - 309973/2015-5), the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, ECNU, the Research Grants Council of Hong Kong through project 11215017, National Key RD Project of China (2018YFE0201603), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) (L.S.

    Proceedings from the 9th annual conference on the science of dissemination and implementation

    No full text
    corecore